Bond order resolved 3d5/2 and valence band chemical shifts of ag surfaces and nanoclusters.

نویسندگان

  • Wei Qin
  • Yan Wang
  • Yongli Huang
  • Zhaofeng Zhou
  • Chao Yang
  • Chang Q Sun
چکیده

Incorporating the tight-binding theory and the bond order-length-strength (BOLS) correlation into the X-ray photoelectron spectra of Ag(111) and (100) surfaces and the Auger electron spectra of Ag nanoparticles deposited on Al2O3 and CeO2 substrates has led to quantitative information of the 3d5/2 and the valence binding energies of an isolated Ag atom and their shifts upon bulk, defect, surface, and nanocrystal formation. It is clarified that the globally positive energy shifts originate from the undercoordination-induced Goldschmidt-Pauling bond contraction and the associated local quantum entrapment and the heterocoordination-induced bond nature alteration at the particle-substrate interfaces. Perturbation to the Hamiltonian by atomic ill-coordination dictates the energy shift that is proportional to the bond energy at equilibrium. Theoretical reproduction of the measured spectroscopic data derived that the 3d5/2 energy of an isolated Ag atom shifts from 363.02 to 367.65 eV and the valence band center from 0.36 to 8.32 eV upon bulk formation. The extended Wagner plots revealed the coefficients of valence recharging and potential screening to be 1.21 and 1.56 for Ag interacting with Al2O3 substrate and 1.15 and 1.50 for Ag with CeO2, respectively. Exercises exemplify the enhanced capabilities of XPS and AES in determining quantitative information regarding the evolution of the local bond length, bond energy, binding energy density, and atomic cohesive energy, with the coordination and chemical environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic process of Cu(Ag, V, Rh)(0 0 1) surface oxidation: atomic valence evolution and bonding kinetics

The electronic processes of Cu(Ag, V, Rh)(0 0 1) surface oxidation are comparatively analyzed based on the recent ‘chemical bond–valence band–potential barrier’ (BBB) correlation mechanism [C.Q. Sun, Prog. Mater. Sci. 48, 521–685 (2003)], which allows reaction formulae for all the observed phases with identification of individual atomic valence and the binding kinetics at the surfaces with the ...

متن کامل

Electronic properties and bonding in ZrHx thin films investigated by valence-band x-ray photoelectron spectroscopy

The electronic structure and chemical bonding in reactively magnetron sputtered ZrHx (x = 0.15, 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a resul...

متن کامل

Computational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption

First-principle calculations were carried out to investigate the adsorption of CO over Cun nanoclusters. The structural, spectroscopic and electronic properties like optimized geometries, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, binding energy, adsorption energy, vibrational frequency and density of states (DOSs) of the p...

متن کامل

Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters.

Bulk oxyfluoride glasses doped with Ag nanoclusters have been prepared using the melt quenching technique. When pumped in the absorption band of Ag nanoclusters between 300 to 500 nm, these glasses emit a very broad luminescence band covering all the visible range with a weak tail extending into the near infrared. The maximum of the luminescence band and its color shifts to the blue with a shor...

متن کامل

Synthesis and Applications of Water-Soluble Fluorescent Silver Nanoclusters

Ag nanoclusters consisting of several AQ:1 to a hundred atoms with diameters less than 2 nm show molecule-like properties, including discrete electronic AQ:2 transitions and strong fluorescence. They have received considerable research interest due to their unique optical, electrical and chemical properties and potential applications in chemicaland biosensing. Ag nanoclusters exhibit excellent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 116 30  شماره 

صفحات  -

تاریخ انتشار 2012